
STABILITY OF STOCHASTIC DYNAMIC EQUATIONS
WITH TIME-VARYING DELAY ON TIME SCALES

Le Anh Tuan

Ha noi University of industrial, Vietnam

Busan- 11/2017



The aim of talk

This talk presents some our recent results related to the Stability of
stochastic dynamic equations with time-varying delay on time scales. We
divide this talk into three main parts

1 Introduce

2 Preliminaries

3 ∇-Stochastic dynamic delay equations

4 Exponential p-stability of stochastic dynamic delay equations

5 Almost sure exponential stability of dynamic delay equations



Chapter 1: Introduce

Introduce

In recent years, the theory of the analysis on the time scale, which
was introduced by S. Hilger in his PhD thesis, has been born in order
to unify continuous and discrete analysis.

As far as we know, there are very few works dealing the dynamic
delay equations on time scales. The main reason is that the
subtraction on a time scale, in general, is no longer valid, which
causes the difficulty to drive a concept of “delay equations on time
scales”. In X. L. Liu, W. X. Wang, J. Wu (2010) and Y. Ma, J. Sun
(2007), the authors try to give the concept of delay equation and
consider qualitative properties of solutions of deterministic dynamic
delay equation on time scales. However, the assumptions imposed on
time scales in this paper are too strict.



Chapter 1: Introduce

Introduce

Therefore, in this topic we try to give a definition for stochastic
dynamic delay equation, which is more available, and consider the
existence and uniqueness of solutions. After that, we use Lyapunov
function to give sufficient conditions for the uniformly exponentially
p-stable, exponential almost sure stability.

Since the substitution rule in integral can not apply in the calculus on
time scale, this study is not a simple unification of some known
results on the difference/differential delay equations. To obtain these
results, we have to use some new techniques in the proof of theorems.



Chapter 2: Preliminaries

Preliminaries and Definitions on times

A time scale is a nonempty closed subset of the real numbers R, and
we usually denote it by the symbol T. We assume throughout that a
time scale T is endowed with the topology inherited from the real
numbers with the standard topology.

Let σ(t) = inf{s ∈ T : s > t}, µ(t) = σ(t)− t and
ρ(t) = sup{s ∈ T : s < t}, ν(t) = t − ρ(t) (supplemented by
sup ∅ = inf T, inf ∅ = supT). A point t ∈ T is said to be right-dense if
σ(t) = t, right-scattered if σ(t) > t, left-dense if ρ(t) = t,
left-scattered if ρ(t) < t and isolated if t is simultaneously
right-scattered and left-scattered.

If T has a right-scattered minimum Mmin, then define

kT = T \ {Mmin}, otherwise kT = T.
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Preliminaries and Definitions on times

A function f defined on T is regulated if there exist the left-sided
limit at every left-dense point and right-sided limit at every
right-dense point. A regulated function is called ld-continuous if it is
continuous at every left-dense point. Similarly, one has the notion of
rd-continuous. Denote Ta = {t ∈ T : t ≥ a} and by R (resp. R+)the
set of all rd-continuous and regressive (resp. positive regressive)
functions.

For any function f defined on T, we write f ρt = f (ρ(t)) for all t ∈ kT
and limσ(s)↑t f (s) by f (t−) if this limit exists. It is easy to see that if
t is left-scattered then ft− = f ρt . Throughout of this topic, we
suppose that the time scale T has bounded graininess, that is
ν∗ = sup{ν(t) : t ∈ kT} <∞.
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Preliminaries and Definitions on times

On time scales, we have achieved basic results about: ∇- derivatives
and ∇-integral of a function defined on time scales; stochastic
process, predictable process, martingale, semimartingale, stopping
time indexed by a time scale; Doob-Meyer expansion; ∇-stochastic
integration on time scales; Itô’s formula and applying the Itô’s
formula to the martingale problem ( If the reader is interested in it,
these notions can be found in many documents and papers, such as
M. Bohner and A. Peterson (2001), N.H. Du and N.T. Dieu (2011,
2013)...).



Chapter 2: Preliminaries

Preliminaries and Definitions on times

if p ∈ R then the exponential function ep(t, t0), is solution of the
initial value problem

y∇(t) = p(t−)y(t−), y(t0) = 1, t > t0. (2.1)

Also if p ∈ R, e	p(t, t0) is the solution of the equation

y∇(t) = −p(t−)y(t), y(t0) = 1, t > t0, (2.2)

where 	p(t) = −p(t)
1+µ(t)p(t) .
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Preliminaries and Definitions on times

Later, we need the following lemma:

Lemma 2.1

Let u(t) be a regulated function and ua, α ∈ R+. Then, the inequality

u(t) ≤ ua + α

∫ t

a
u(τ−)∇τ for all t ∈ Ta

implies
u(t) ≤ uaeα(t, a) for all t ∈ Ta.
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3.1. ∇-Stochastic delay dynamic equations

Let T be a time scale. We say that the ld-continuous map
r(·) : kT→ T is a delay function if r(t) ≤ t− for all t ∈ T and
r∗ = sup{t − r(t) : t ∈ T} <∞. For any s ∈ T, we see that
bs := min{r(t) : t ≥ s} > −∞. Denote Γs = {r(t) : t ≥ s} ∩ [bs , s]
and by C (Γs ; Rd) the family of continuous functions from Γs to Rd

with the norm ‖ϕ‖s = sups∈Γs
‖ϕ(s)‖.

Fix t0 ∈ T and let (Ω,F , {Ft}t∈Tt0
,P) be a probability space with

filtration {Ft}t∈Tt0
satisfying the usual conditions (i.e., {Ft}t∈Tt0

is
increasing and right continuous while Ft0 contains all P-null sets).
Denote by M2 the set of the square integrable martingales defined on
(Ω,F , {Ft}t∈Tt0

,P) and by Mr
2 the subspace of the space M2

consisting of martingales with continuous characteristics.Throughout
of this paper, we fix a M = {Mt}t≥t0 ∈M2 with the characteristic
〈M〉t .
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3.1. ∇-Stochastic dynamic delay equations

Suppose that 〈M〉t is absolutely continuous with respect to Lebesgue
measure µ∇, i.e., there exists Ft-adapted progressively measurable
process Kt such that

〈M〉t =

∫ t

t0

Kτ∇τ. (3.1)

Further, for any T ∈ Tt0 , there is a constant N (possibly depending
on T ) such that

P{esssupt0≤t≤T|Kt| ≤ N} = 1. (3.2)

Denote by Lloc
1 (Tt0 ;Rd) (resp. Lloc

2 (Tt0 ;Rd ,M)) the set of functions,

valued in Rd , Ft-adapted such that
∫ T
t0

f (t)∇t <∞, (resp.

E
∫ T
t0

h2(t)∇〈M〉t <∞) ∀T ∈ Tt0 .
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3.1. ∇-Stochastic delay dynamic equations

Let r(t) be a delay function. We now consider the ∇-stochastic dynamic
delay equations on time scale{

d∇X (t) = f (t,X (t−),X (r(t)))d∇t + g(t,X (t−),X (r(t)))d∇Mt

X (s) = ξ(s) ∀ s ∈ Γt0 , t ∈ Tt0 ,

(3.3)
where f : T× Rd × Rd → Rd ; g : T× Rd × Rd → Rd are two Borel
functions and ξ = {ξ(s) : s ∈ Γt0} is a C (Γt0 ; Rd)-valued, Ft0-measurable
random variable with E‖ξ‖2

t0
< +∞. In the following we denote by T̃s the

set Γs ∪ Ts for any s ∈ T.
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3.1. ∇-Stochastic delay dynamic equations

Definition 3.1

A stochastic process (X (t))
t∈T̃t0

, valued in Rd , is called the solution of the

equation (3.3) if

(i) {X (t)} is {Ft}-adapted;

(ii) f (·,X (·−),X (r(·))) ∈ Lloc
1 (Tt0 ;Rd);

(iii) g(·,X (·−),X (r(·))) ∈ Lloc
2 (Tt0 ;Rd ,M);

(iv) X (t) = ξ(t) ∀ t ∈ Γt0 and for any t ∈ Tt0 and with probability 1 there
holds the equation

X (t) = ξ(t0) +

∫ t

t0

f (s,X (s−),X (r(s)))∇s

+

∫ t

t0

g(s,X (s−),X (r(s)))∇Ms , ∀ t ∈ Tt0 . (3.4)
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3.1. ∇-Stochastic delay dynamic equations

The equation (3.3) is said to have the uniqueness of solutions if X (t)
and X (t) with X (t) = X (t) for t ∈ Γt0 are two processes satisfying
(3.4) then

P{X (t) = X (t) ∀ t ∈ Tt0} = 1.

It is seen that
∫ t
t0
g(s,X (s−),X (r(s)))∇Ms is Ft-martingale so it has

a cadlag modification. Hence, if X (t) satisfies (3.4) then X (t) is
cadlag. In addition, if Mt is rd-continuous, so is X (t).

We now give conditions guaranteeing the existence and uniqueness of
solutions to Equation (3.3). Firstly, we consider the case where
coefficients satisfy Lipschitz and Sub-linear growth rate conditions.
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3.2. Existence and uniqueness of solutions

Theorem 3.2

Assume that for any T ∈ Tt0 , there exist two positive constants κ = κ(T )
and κ = κ(T ) such that
(i) (Lipschitz condition) for all xi , yi ∈ Rd , i = 1, 2, and t ∈ [t0,T ]

‖f (t, x1, y1)− f (t, x2, y2)‖2 ∨ ‖g(t, x1, y1)− g(t, x2, y2)‖2

≤ κ(‖x2 − x1‖2 + ‖y2 − y1‖2). (3.5)

(ii) (Linear growth condition) for all (t, x , y) ∈ [t0,T ]× Rd × Rd

‖f (t, x , y)‖2 ∨ ‖g(t, x , y)‖2 ≤ κ(1 + ‖x‖2 + ‖y‖2). (3.6)

Then, there exists a unique solution X (t) to Equation (3.3) and this
solution is a square integrable semimartingale.
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3.3. Rate of the convergence

Theorem 3.3

Let the assumptions of Theorem 3.2 hold. Let X (t) be the unique solution
of Equation (3.3) and Xn(t) be the Picard iteration defined by:

Xn(t) = ξ(t) ∀ t ∈ Γt0 ;

and

Xn(t) = ξ(t0) +

∫ t

t0

f
(
s,Xn−1(s−),Xn−1(r(s))

)
∇s

+

∫ t

t0

g
(
s,Xn−1(s−),Xn−1(r(s))

)
∇Ms , t ≥ t0 (3.7)

. with n = 1, 2, . . . .
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3.3. Rate of the convergence

Then,

E
(

sup
t0≤t≤T

‖Xn(t)− X (t)‖2
)
≤ 2Ce2P(T , t0)P

n
hn(T , t0), (3.8)

for all n ≥ 1, where C and P are defined in the proof of Theorem 3.2, i.e.,
C = 2κ

[
(T − t0)2 + 4N(T − t0)

]
(1 + 2E‖ξ‖2

t0
);P = 4κ(T − t0 + 4N).
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3.4. Condition locally Lipschitz on existence and
uniqueness of solutions

a. Infinitesimal operator
Let C 1,2([a, b]× Rd ;R) be the set of all functions V (t, x) defined on
[a, b]× Rd , having continuous ∇-derivative in t and continuous second
derivative in x . For any V ∈ C 1,2(Tt0 × Rd ;R) define

LV (t, x , y) = V∇t (t, x)

+
d∑

i=1

∂V (t, x)

∂xi
(1−1I(t))fi (t, x , y)+

(
V (t, x+f (t, x , y)ν(t))−V (t, x)

)
Φ(t)

+
1

2

∑
i ,j

∂2V (t, x)

∂xixj
gi (t, x , y)gj(t, x , y)K̂ c

t −
d∑

i=1

∂V (t, x)

∂xi
gi (t, x , y)

∫
R
uΥ̂(t, du)

+

∫
R

(V
(
t, x+f (t, x , y)ν(t)+g(t, x , y)u

)
−V (t, x+f (t, x , y)ν(t)))Υ(t, du),

(3.9)
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3.4. Condition locally Lipschitz on existence and
uniqueness of solutions

where V∇t is partial ∇-derivative of V (t, x) in t and

Φ(t) =

{
0 if t left-dense

1
ν(t) if t left-scattered.

Set

Ht = V (t,X (t))− V (t0,X (t0))−
∫ t

t0

LV (s,X (s−),X (r(s)))∇s. (3.10)

By using the Itô’s formula ([2, Theorem 1, pp.322]) we see that
(Ht ,Ft)t∈Tt0

is a locally integrable martingale.
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3.4. Condition locally Lipschitz on existence and
uniqueness of solutions

b. Condition locally Lipschitz

Theorem 3.4

Suppose that for any k > 0 and T ∈ Tt0 there exists a constant LT ,k > 0:

‖f (t, x1, y1)− f (t, x2, y2)‖2 ∨ ‖g(t, x1, y1)− g(t, x2, y2)‖2

≤ LT ,k(‖x2 − x1‖2 + ‖y2 − y1‖2), for all xi , yi ∈ Rd , i = 1, 2, (3.11)

with ‖xi‖ ∨ ‖yi‖ ≤ k and t ∈ Tt0 . Further, there are two positive
constants λ1, λ2 and a function V ∈ C 1,2([bt0 ,T ]× Rd ;R+) satisfying

LV (t, x , y) ≤ λ1V (t−, x) + λ2V (r(t), y), (3.12)

and lim
‖x‖→∞

inf
t∈[t0,T ]

V (t, x) =∞. Then, the equation (3.3) has a unique

solution X (t) defined on T̃t0 .
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4.1. Basic definition

We suppose that for any s > t0 and ξ ∈ C (Γs ; Rd), there exists a unique
solution X (t, s, ξ), t ∈ T̃s of the equation (3.3) satisfying X (t, s, ξ) = ξ(t)
for any t ∈ Γs . Further,

f (t, 0, 0) ≡ 0; g(t, 0, 0) ≡ 0, ∀ t ∈ Tt0 . (4.1)

From the condition (4.1), Equation (3.3) has a trivial solution
X (t, s, 0) ≡ 0.
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4.1. Basic definitions

Definition 4.1

The trivial solution X (t, s, 0) ≡ 0 of the equation (3.3) is said to be
exponentially p-stable if there is a positive constant α such that for any
s > t0, there exists βs > 0 for which the following relation

E‖X (t, s, ξ)‖p ≤ βs‖ξ‖ps e	α(t, s) on t ≥ s, (4.2)

holds for any ξ ∈ C (Γs ; Rd).

• If one can choose βs independent of s, the trivial solution of the
equation (3.3) is called uniformly exponentially p-stable. When p = 2, it is
usually said to be exponentially stable in mean square.
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4.2. Sufficient conditions for the exponential p-stability

Theorem 4.2

Let α1, α2, p, c1, c2 be positive numbers with α1 > α2. Suppose that there
exists a positive definite function V ∈ C 1,2(T× Rd ;R+) such that

c1‖x‖p ≤ V (t, x) ≤ c2‖x‖p ∀(t, x) ∈ T× Rd , (4.3)

and for all (t, x , y) ∈ Tt0 × Rd × Rd

LV (t, x , y) ≤ − α1

1 + α1ν(t)
V (t−, x) +

α2e	α1(t−, r(t))

1 + α2ν(t)
V (r(t), y). (4.4)

Then, the equation (3.3) is uniformly exponentially p-stable.
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4.3. Examples

• We now consider a special case. Let P be a positive definite matrix and
V (t, x) = x>Px , where x> is the transpose of a vector x . By using (3.9)
and by directly calculating we obtain

LV (t, x , y) = x>Pf (t, x , y) + f (t, x , y)>Px + f (t, x , y)>Pf (t, x , y)ν(t)

+ g(t, x , y)>Pg(t, x , y)Kt . (4.5)
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4.3. Examples

Example 4.3.1

• Let T be a time scale containing 0 and r(t) be a delay function.
Consider the stochastic dynamic delay equation on time scale T{

d∇X (t) = AX (t−)d∇t + BX (r(t))d∇W (t)

X (s) = ξ(s) ∀ s ∈ Γ0, t ∈ T0,
(4.6)

where A and B are d × d matrices. Let V (t, x) = ‖x‖2.
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Suppose that the spectral abscissa of the matrix A + A> + A>Aν(t) is
uniformly bounded by a negative constant −α1 and there exists a positive
constant α2 such that α2 < α1 and ‖B‖2er∗α1 ≤ α2

1+ν∗α2
. For this

assumption we obtain

LV (t, x , y) ≤ − α1

1 + α1ν(t)
‖x‖2 +

α2e	α1(t−, r(t))

1 + α2ν(t)
‖y‖2.

Therefore, assumptions of Theorem 5.2 are satisfied with p = 2, it means
the trivial solution of Equation (4.6) is exponentially stable in mean square.
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4.3. Examples

Example 4.3.2
Let T be a time scale defined by

T = P 1
4
,1 =

∞⋃
k=1

[
5k

4
,

5k + 4

4

]
.

Let r(t) be a delay function satisfying r∗ = supt∈T(t − r(t)) = 1
4 .

Consider the stochastic dynamic delay equation on time scale T{
d∇X (t) =

(
AX (t−) + 1

2X (r(t))
)
d∇t + BX (t−)d∇W (t), t ≥ t0

X (s) = ξ(s) ∀ s ∈ Γt0 ,

(4.7)
where A,B are the 3× 3 matrices defined by
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A =


−5

3
2
3 0

2
3 −2 −2

3

0 −2
3 −7

3

 ;B =


11
18 −2

9
5

18

−2
9

4
9 − 1

18

5
18 − 1

18
25
36

 .

With the Lyapunov function V (t, x) = ‖x‖2, by direct calculation we have

LV (t, x , y) ≤ −143

144
‖x‖2 +

1

2
‖y‖2. (4.8)
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Setting α1 := 143
144 , α2 := 4

5 then α1, α2 satisfy the inequalities
1
2e
α1r∗ < α2

1+ν∗α2
. Combining these estimations and (4.8), we obtain

LV (t, x , y) ≤ −α1‖x‖2 +
α2

1 + ν∗α2
e−α1r∗‖y‖2

≤ − α1

1 + α1ν(t)
‖x‖2 +

α2e	α1(t−, r(t))

1 + α2ν(t)
‖y‖2.

By virtue of Theorem 5.2 the trivial solution of Equation (4.7) is
exponentially stable in mean square.



Almost sure exponential stability

5.1. Basic definition

Definition 5.1

The trivial solution X (t) ≡ 0 of the equation (3.3) is said to be almost
surely exponentially stable if for any s ∈ Tt0 the relation

lim sup
t→∞

log ‖X (t, s, ξ)‖
t

< 0 (5.1)

holds for any ξ ∈ C (Γs ; Rd).



Almost sure exponential stability

5.2. Sufficient conditions for the almost sure exponential
stability

Theorem 5.2

Let α1, α2, p, c1 be positive numbers with α1 > α2. Let α be a positive
number satisfying α

1+αν(t) < α1 and let η be a non-negative ld-continuous

function defined on Tt0 such that
∫∞
t0

eα(τ−, t0)ηt∇t <∞ a.s..
Suppose that there exists a positive definite function
V ∈ C 1,2(Tt0 × Rd ;R+) satisfying c1‖x‖p ≤ V (t, x) ∀(t, x) ∈ Tt0 × Rd ,
and for all t ≥ t0,

V∇t (t, x) +AV (t, x , y) ≤ −α1V (t−, x) + ηt a.s., (5.2)

for all x ∈ Rd and t ≥ t0. Then, the trivial solution of equation (3.3) is
almost surely exponentially stable.
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