MULTI-WAVELENGTH ALL-OPTICAL PACKET SWITCHING NODE USING MODIFIED PULSE POSITION MODULATION HEADER PROCESSING

NÚT CHUYỂN MACH GÓI TOÀN QUANG ĐA BUỨC SÓNG SỬ DỤNG XỦ LÝ MÀO ĐẦU ĐIỀU CHẾ VỊ TRÍ XUNG SỬA ĐỔ|

Cao Hồng Sơn

Học viện Công nghệ Bưu chính Viễn thông
Email: sonch@ptit.edu.vn
Ngày nhận bài: 20/10/2017.
Ngày nhận bài sửa sau phản biện: 15/12/2017.
Ngày chấp nhận đăng: 25/12/2017.

TÓM TÁT

Công nghệ chuyển mạch gói toàn quang (OPS) là một trong những giải pháp hứa hẹn nhất cho các kiến trúc mạng thế hệ tiếp theo. Tuy nhiên, trong các mạng OPS thời gian xử lý mào đầu là nhân tố chính làm hạn chế hiệu năng mạng. Trong bài báo này, tác giả đề xuất một kiến trúc nút chuyển mạch gói toàn quang sử dụng sơ đổ xử lý mào đầu điều chế vị trí xung sửa đổi (MPPM) cho định tuyến gói cho mạng chuyển mạch gói quang đa bước sóng tốc độ cao, có khả năng cải thiện được hiệu năng mạng. Nút đề xuất được khảo sát và mô phỏng để chỉ ra là xử lý mào đẩu dựa trên MPPM giúp giảm thời gian xử lý mào đầu và tăng OSNR so với xử lý mào đầu dựa trên PPM thông thường.

Từ khóa: Chuyển mach gói quang (OPS), Chuyển mạch OPS đồng bộ với các gói kích thuớc cố địinh, xưlý mào đầu gói quang dựa trên MPPM.

Abstract

Optical packet switching (OPS) technologies are among the most promising solutions for Next Generation Network architectures. However, in OPS networks, the header processing time is a main factor that limits network performance. In this paper, we propose an all-optical packet switching node architecture using modified pulse position modulation (MPPM) header processing scheme for packet routing in all-optical highspeed multi-wavelength packet switching network, which is able to improve the network performance. The proposed node is investigated and simulated to show that MPPM-based header processing helps to reduce the header processing time, increase the optical signal-to-noise ratio (OSNR) in comparison with conventional PPM-based header processing.

Keywords: Optical packet switching (OPS), synchronous OPS switching with fixed-sized packets, MPPM-based optical packet header processing.

