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ABSTRACT 
Power quality is drawing much concern recently.  In order for monitor power 

quality of power systems in real time, numerous modelling of power signals 
(voltages and/or currents) has been proposed to estimate the parameters of the 
systems. Unfortunately, most of the models fail to completely represent most 
important characteristics of the signals of a three-phase power system. This 
paper proposes a new state-space model that can well represent a real three-
phase power system by taking into account the unbalance conditions and 
harmonic distortion of a three-phase power system. The model associated with 
Extended Kalman Filter is then applied to estimate the positive and negative 
sequences of the fundamental component. The simulation results show that the 
proposed approach can accurately estimate the sequences of a three-phase 
power system in real time.     

Keywords: State space model;Unbalance; Harmonic; Extended Kalman Filter. 

TÓM TẮT 
Chất lượng điện năng là chủ đề nghiên cứu thu hút nhiều sự quan tâm gần 

đây. Để giám sát chất lượng điện năng của hệ thống điện, nhiều mô hình tín hiệu 
điện (điện áp/dòng điện) đã được đề xuất để ước lượng các tham số của hệ thống 
điện. Vậy nhưng, hầu hết những mô hình này không thể mô tả đầy đủ các đặc 
điểm quan trong của tín hiệu điện của hệ thống điện ba pha. Bài báo này đề xuất 
một mô hình mới biểu diễn một hệ thống điện ba pha thực tế trên không gian 
trạng thái, trong đó mô tả cả hiện tượng mất cân bằng và hiện tượng sóng hài 
của hệ thống điện ba pha. Mô hình trạng thái này được áp dụng với bộ lọc 
Kalman mở rộng để ước lượng các thành phần thứ tự thuận và thứ tự nghịch của 
thành phần tần số cơ bản trong tín hiệu điện ba pha. Kết quả mô phỏng chỉ ra 
rằng phương pháp được đề xuất trong bài báo có thể ước lượng chính xác các 
thành phần thứ tự thuận và thứ tự nghịch này. 

Từ khóa: Mô hình trạng thái; Mất cân bằng; Sóng hài; Bộ lọc Kalman mở rộng. 
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SYMBOL 
Symbol Unit Meaning 

sT   s Sample time 

va, vb, vc
 V a phase voltage, b phase voltage, 

c phase voltage 

1. INTRODUCTION 
In ideal three-phase power systems, the three-phase 

currents/voltages should be constant-frequency sinusoids 
with equal magnitudes and phases-shifted by 1200. Such 
three-phase power systems are balanced systems [1].  
Unfortunately, in practice because of uneven distribution of 
single-phase load, asymmetrical faults or other reasons, the 
power systems become unbalanced, i.e., the three-phase 
currents/voltages are often different in magnitudes and/or 
their phases are not 1200

 apart. Additionally, due to load 
and power supply variation, the fundamental frequency 
and the voltages’ amplitudes of a three-phase power 
system are not constant but changing in time [2, 3]. 
Because of the appearance of nonlinear loads, power 
signals are also contaminated by high-order frequencies 
sinusoids called harmonics. The frequency values of 
harmonics are multiples of the fundamental frequency [4]. 
These power quality problems affect the reliability and 
stability of power systems and must be identified as fast as 
possible [5]. 

In order to effectively monitor three-phase power 
systems’ operating conditions, various models of three-
phase power systems have been proposed to estimate 
their parameters. [6] proposed a state-space model of 
three-phase voltages. However, the model assumes the 
systems to be balanced and ignores the unbalance 
characteristics. Comparing to [6], the state-space model 
presented in [7] can represent an unbalanced system by 
introducing one more state variable. Nevertheless, it 
ignored the existence of high-order frequency sinusoids in 
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the three-phase voltages/currents. The state-space model 
in [8] already considered the unbalance condition and 
harmonic distortion of a three-phase power system, 
nevertheless, it requires the fundamental frequency to be 
provided. Similarly, Multi-output Adaline [9] also needs to 
know the value of the fundamental frequency in advance.  

Symmetrical theory provides an effective solution to 
analyze an unbalanced power system by breaking down 
the unbalance voltage/current into three balanced 
systems: the positive, the negative and the zero sequence 
[10]. The negative sequence is useful indication of 
unbalanced systems and used in fault detection, fault 
location and overcurrent detection [11, 12]. On the other 
hand, the positive-sequence quantity is needed in 
evaluating voltage variation of power systems which is 
significant to monitor and control the systems’ stability [8].  

This research proposes a new state-space model that 
can describe the unbalance, the harmonic contamination 
and the unknown fundamental frequency of a three-phase 
power system. Then Extended Kalman Filter is applied on 
this model to estimate the positive and negative sequence 
of the fundamental components including their amplitudes 
and phases. The organization of this paper is as follows. In 
Section 2, the state-space model in [7] are presented. This 
model ignores the existence of harmonics in power signals. 
Based on this model, in Section 3, a new state-space model 
is introduced considering the appearance of harmonic 
components. An identification scheme to estimate the 
state variables of the new model is also proposed in this 
section. Section 4 describes the application of the new 
approach in estimating the positive and negative 
sequences of the fundamental component. Section 5 
presents simulation results of the performance of the 
proposed model associated with Extended Kalman Filter. 
Section 6 concludes the paper.  

2. REVIEW OF THE STATE-SPACE MODEL OF THREE-
PHASE POWER SYSTEMS [7]  

In this section, the state-space model of unbalanced 
three-phase voltages and/or currents in [7] will be 
presented. Consider unbalanced three phase voltages of 
the following expression: 

a a s a

b b s b

c c s c

v (k) V sin(ωkT )
v (k) V sin(ωkT )

v (k) V sin(ωkT )







 


 
  

 (1) 

where k is the iteration number, TS is the sampling period, 

Va, Vb, Vc are the amplitudes, f
2





 is the fundamental 

frequency,  , ,a b c    are the initial phase angles of the 
three-phase voltages. 

 
In [10], the set of three phase signals can be represented 

as a sum of three sets according to the theory of 
symmetrical components: 
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In (2), the set: 
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is the positive sequence, that has clockwise rotation of  
a-b-c. V+ and skT       are respectively the amplitude 
and phase angle of this positive sequence.  

Additionally, the set: 

a s

b s

c s

v (k) V sin( kT )

2
v (k) V sin( kT )

3
2

v (k) V sin( kT )
3


 


 


 


    



    




    

 (4) 

is the negative sequence that has counter-clockwise 
rotation of a-b-c. V- and skT       are respectively the 
amplitude and phase angle of this negative sequence.  

Finally the set 

( ) sin( )

( ) sin( )

( ) sin( )

o
a o s 0

o
b o s 0

o
c o s 0

v k V kT

v k V kT
v k V kT

    


  
    

 (5) 

is the zero sequence of three phases with the same 
magnitude and in phase. 

Applying Clark’s transform [10] to transform the positive 
sequence in three dimensional coordinate to  two 
dimensional αβ coordinate: 

a

b

c

1 0
v (k)

v (k) 2 1 3
v (k)

3 2 2v (k)
v (k)

1 3
2 2
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 (6) 

results in: 

s

s

v (k) V cos( kT )
v (k) V sin( kT )


a  


  

    


   
 (7) 

The complex form of the positive sequence is 
determined as: 

( ) ( ) ( ) sj kTv k v k jv k A e   
a      (8) 

with
 

jA V e 
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Similarly, the Clark’s transform of the negative 
components is: 

s

s

v (k) V cos( kT )
v (k) V sin( kT )


a  


  

    


   
 (9) 

The complex form of the negative component is 
calculated from (9) as: 

( ) ( ) ( ) sj kTv k v k jv k A e   
a      (10) 

with
 

jA V e 
   

Through Clark’s transform, the zero sequence is 
eliminated. 

By applying Clark’s transform on the three phase signals 
in (1), the resulting complex form of the three phase signals 
is the sum of the complex currents corresponding to the 
positive, negative and zero sequences that is: 

( ) s sj kT j kTv k V e V e  

    (11) 

(11) can be re-expressed as: 
( 1) ( 1)( ) s s s sj T j k T j T j k Tv k A e e A e e       

    (12) 

By defining: 

2

3

( )

( )

s

s

j kT

j kT

q k A e

q k A e








 



 (13) 

and by assuming the fundamental frequency of system (1) 
is constant in one sampling period, the following equations 
can be deduced from (13): 

2 2

1
3 3

( 1) ( )

( 1) ( ) ( )

s

s

j T

j T

q k e q k

q k e q k



 

  
        

 (14) 

If frequency ω in (1) is unknown,  sj Te   is considered an 

unknown parameter of model (14). Let 1( ) sj Tq k e  , the 
following model contains three state variables q1((k), q2(k), 
q3(k):     

1 1

2 1 2

3 1 3

( 1) ( )

( 1) ( ) ( )

( 1) ( ) ( )

q k q k

q k q k q k

q k q k q k

   
       
      

 (15) 

with a scalar output: 

  1 2 3( ) ( ) 0 1 1 ( ) ( ) ( )
Ty k v k q k q k q k   (16) 

Model (15), (16) is a nonlinear state space model. 
Although this model takes into account unbalance 
conditions of power systems, it does not consider high-
frequency harmonics which are prevail in the signals of 
power systems. Therefore, this model is insufficient to 
represent a practical three-phase power system and if used 
to estimate the fundamental frequency and the positive 
and negative sequences of unbalanced three-phase 
voltages under harmonic distortion, the estimation results 
will be less accurate due to model error.   

3. PROPOSAL OF A NEW STATE-SPACE MODEL OF 
THREE-PHASE SYSTEMS AND ITS ASSOCIATED 
IDENTIFICATION SCHEME 

3.1. A new state-space model of unbalanced three-
phase systems in harmonic distortion 

According to [10], the three-phase voltages (or currents) 
of an unbalanced three-phase power system under 
harmonic distortion are described as:   

a na s na
n

b nb s nb
n

c nc s nc
n

v (k) V sin(n kT )

v (k) V sin(n kT )

v (k) V sin(n kT )


   


   


    








 (17) 

where n is harmonic order; Vna, Vnb, Vnc 
and , ,na nb nc    are 

correspondingly the amplitudes and initial phase angles of 
the three-phase order-n harmonic.  

In order to modelling the three-phase voltages va, vb, vc, 
this proposal applies the modelling method in the previous 
section to get the state-space model of each three-phase 
harmonic (the fundamental term can be considered as 
harmonic order 1). 

na s na

nb s nb

nc s nc

V sin(n kT )
V sin(n kT )

V sin(n kT )

  


  
   

 (18) 

with n = 1, 2, 3,... A combination of all the harmonic models 
gives the complete state-space model of (17).  

For simplicity, consider three-phase voltages with 
harmonics order n = 3 and n = 5 as follows:   

a 1a s 1a 3a s 3a

5a s 5a

b 1b s 1b 3b s 3b

5b s 5b

c 1c s 1c 3c s 3c

5c s 5c

v (k) V sin( kT ) V sin(3 kT )

V sin(5 kT )

v (k) V sin( kT ) V sin(3 kT )

V sin(5 kT )

v (k) V sin( kT ) V sin(3 kT )

V sin(5 kT )

       
    
        


   
        


   

 (19) 

As in Section 2, the fundamental components: 

 
1a s 1a

1b s 1b

1c s 1c

V sin( kT )
V sin( kT )

V sin( kT )

  


  
   

 (20) 

are represented by two state variables q2(k) and q3(k) with 
the following equations: 

( ) ( )

( ) ( ) ( )

s

s

j T
2 2

j T 1
3 3

q k 1 e q k

q k 1 e q k



 

  
        

 (21) 

where sj Te 

 is an unknown parameter.  
Similarly, the 3rd order harmonics are represented by 

two state variables q4(k) and q5(k) such that: 
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( ) ( ) ( )

( ) ( ) ( )

s

s

j T 3
4 4

j T 3
5 5

q k 1 e q k

q k 1 e q k



 

  
        

 (22) 

And the 5th order harmonics are described by two state 
variables 

 ( ) ( ) ( )

( ) ( ) ( )

s

s

j T

j T

q k e q k

q k e q k



 

  
        

5
6 6

5
7 7

1

1
 (23) 

From (21) (22) (23), the model of the three phase 
voltages (19) is:  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

s

s

s

s

s

s

j T
2 2

j T 1
3 3

j T 3
4 4

j T 3
5 5

j T 5
6 6

j T 5
7 7

q k 1 e q k

q k 1 e q k
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where sj Te 
 is an unknown parameter. By introducing one 

more state variable ( )1
 sj Tq k e , model (24) becomes: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

2 1 2

3 1 3

3
4 1 4

3
5 1 5

5
6 1 6

5
7 1 7

q k 1 q k

q k 1 q k q k

q k 1 q k q k

q k 1 q k q k

q k 1 q k q k

q k 1 q k q k

q k 1 q k q k





  


 
  


 


 
  

  

 (25) 

The model’s output y(k)

 

is set as the complex form of 
the three phase voltages va(k), vb(k), vc(k) in (19) which is 
sum of the complex forms of all the harmonics of the three-
phase voltages as follows:  

 ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

1 2 3 4 5 6 7y k 0 111111 q k q k q k q k q k q k q k  (26) 

Since va(k), vb(k), vc(k) are measured from the grid, y(k) 
can be determined from the voltages at each iteration k. 
Among the state variables of (25) and (26), q1(k) represents 
the fundamental frequency and the others correspondingly 
represent the positive and negative sequences of the 
fundamental and the harmonics. If more other harmonic 
orders appear in (19), more state variables can be added to 
(25) and (26) to represent these harmonics. 

Model (25 and (26) can be used with an identification 
scheme to estimate the states of power systems. 

3.2. Identification scheme: 
Kalman Filter is an iterative identification method for 

identifying the state variables of linear state-space models 
[13]. Extended Kalman Filter is an extension of  Kalman 
Filter for nonlinear state-space models [13]. Since model 
(25), (26) is a non-linear state-space model, in this paper, 
Extended Kalman Filter [13] is chosen as the identification 

scheme to associate with the proposed model to estimate 
its state variables. However, the methods based on 
Extended Kalman Filter have to deal with the difficulty of 
choosing initial values of the state variables in order to 
prevent the estimation from bias and divergence [13, 14]. 
Hereafter, we propose a solution to solve the initialization 
problem of the proposed method.  

The real frequency should deviate around its nominal 
value (50±0,2Hz, for example) [12]. In addition, recalling that 

( ) sj T
1q k e  , a small sampling time Ts makes the difference 

of the nominal value and the real frequency negligible. If the 
fundamental frequency is assigned to the nominal value, the 
state variable q1(k) becomes a constant, and then model (25), 
(26) becomes linear. By applying Kalman Filter to that model, 
the two state variables q2(k) and q3(k) can be estimated to a 
certain accuracy. Using the observations, an initialization 
stage can be added. The method now includes two stages: 
Initialization and tracking. 

 Initialization stage consists in: 

 Fixing the fundamental frequency at its nominal value 
and then applying Kalman Filter to estimate the state 
variables q2(k) and q3(k) of model (25), (26) in a chosen 
number of iterations with the variable q1(k) is a constant.  

The tracking stage consists in: 

 Assigning the estimated state variables in the 
initialization stage as initial values for the state variables 
q1(k), q2(k), q3(k) in this stage. Applying the EKF to the 
nonlinear model (25), (26) to estimate the state variables. 

 At each iteration k, calculating the mean square 
relative error ε(k) which is the average deviation of the 
estimated output ˆ( )y k  and the output calculated from 
measurement. If the error is over a predetermined 
threshold, this means there is a big change in the signals, 
for example a jump in the signals’ amplitudes, and the 
estimation is out of track. The initialization stage needs to 
be restarted. 

4. APPLICATIONS OF THE NEW APPROACH IN 
ESTIMATING THE POSITIVE AND NEGATIVE SEQUENCES 
OF THE FUNDAMENTAL COMPONENT 

The positive sequence of the fundamental component is 
represented by ˆ ( )2q k , hence, its amplitude 1V   and phase 
angle 1  are deduced from ˆ ( )2q k  as the following formula: 

ˆ( ) ( )

ˆ( ) ( )

1 2

1 2

2
V k q k

3

k q k
2









  



 (27) 

where ˆ ( )2q k  is amplitude of ˆ ( )2q k  and ˆ ( )2q k is its 

phase angle.  
The positive sequence of the fundamental components 

can be reconstructed by
 
applying inverse Clark’s transform 

to
 

ˆ ( )2q k  so that:  
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1

2

1

1 0

2 1 3

3 2 2

1 3

2 2

a

b

c

i (k)
ˆRe(q (k))

i (k)
ˆIm(q (k))

i (k)







 
 

   
         

    
   

   

 (28) 

Similarly, the amplitude V1- and phase angle φ1- of the 
negative sequence of the fundamental component can be 
estimated ˆ ( )3q k  from as follows: 

ˆ( ) ( )

ˆ( ) ( )

1 3

1 3

2
V k q k

3

k q k
2









  



 (29) 

where ˆ ( )3q k  is amplitude of ˆ ( )3q k  and ˆ ( )3q k is its 

phase angle.  
The reconstruction of the negative sequence of the 

fundamental component is carried out as follows: 

( )
ˆRe( ( ))

( )
ˆIm( ( ))

( )

1a

3
1b

3
1c

1 0
i k

q k2 1 3
i k

3 2 2 q k
i k

1 3
2 2







 
 

   
    

     
    

   
   

 (30) 

The positive and negative sequences of the harmonic 
components can be estimated in the same way as the 
estimation of the sequences of the fundamental component. 

5. RESULTS AND DISCUSSION 
A simulation test with Matlab is conducted to confirm 

the performance of the proposed method in estimating the 
fundamental frequency and the positive and negative 
sequences of the fundamental component. In the test, the 
testing three-phase voltages are of the form (17) that 
contains of the fundamental component and the harmonic 
orders 3rd, 5th and 7th. The amplitude of the positive 
sequence is 1,0V and of the negative sequence is 0,4V. The 
fundamental frequency of the signals is 50,2Hz. The 
sampling time Ts is chosen as 0,0005s. The proposed model 
is composed of nine state variables for modelling the 
fundamental components and these harmonics and the 
model of the method in [7] includes three state variables. 
For the both models, the variable q1(k) is initialized at 

,   ,0 9877 0 1564 j  which corresponds to the fundamental 
frequency 50Hz and the initial values of the other state 
variables are set to 0. The estimation results are then 
compared to the estimation by the method in [7].  

Figure 1 shows the estimated amplitudes of the positive 
and negative sequences of the fundamental component by 
the proposed method compared to the estimation of the 
method in [6]. It can be seen that the estimation of the 
proposed method quickly converges to the true value of 

these amplitudes. In details, the estimated amplitudes take 
about one half of a cycle to reach an error less than 1%. On 
the other hand, the estimation of the method in [7] is 
oscillating around this value after a long convergence time.  
The oscillation of the estimation of the method in [7] can be 
explained by the model error which is resulted from 
without taking into modelling the harmonic components 
existing in the testing three-phase voltages.  

The performance of the proposed method in estimating 
the amplitudes of the positive and negative sequences is 
presented in Table 1. According to this table, the estimation 
converges to the true value of the amplitudes with a high 
accuracy (the Mean Square Error (MSE) is about 10-9). The 
evolution of real the positive and negative sequences and 
their reconstruction with the proposed method is 
presented in Figure 2 and Figure 3. It can be seen from 
these figures that after about quarter of a cycle, the 
reconstructed signals converge to the real ones.    

 
Figure 1. Amplitudes for the positive and negative sequences a) positive 

sequence b) negative sequence 
Table 1. Performance of the proposed method in estimating the amplitudes 

of the positive and negative sequences 

Amplitude Mean at steady 
state (V) 

MSE at steady 
state (V) 

Error max at 
steady state (V) 

Positive sequence 1.0000 9101.1708x  4105.2074x  

Negative sequence 0.4000 10104.8576x  4103.9352x  

 
Figure 2. Reconstruction of the positive sequence compared to the real 

positive sequence a) phase a, b) phase b, c) phase c 
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6. CONCLUSIONS 

 
Figure 3. Reconstruction of the negative sequence compared to the real 

negative sequence a) phase a, b) phase b, c) phase c 

In this paper, a new state-space model is presented to 
modelling the three-phase voltages/currents under 
unbalance conditions, harmonic distortion with the 
fundamental frequency unknown. This model is associated 
with Extended Kalman Filter to estimate the positive and 
negative sequences of the fundamental component. A 
simulation is implemented to evaluate the performance of 
the new proposed method. The simulation results prove 
that under harmonic distortion and unbalance conditions, 
the proposed method is efficient in tracking the positive 
and negative sequence of the fundamental components as 
well as estimating their amplitudes and phase angles. The 
application of the proposed method can be extended to 
fundamental frequency estimation and harmonic 
estimation of three-phase voltages/currents.   
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