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ABSTRACT

Power quality is drawing much concern recently. Inorder for monitor power
quality of power systems in real time, numerous modelling of power signals
(voltages and/or currents) has been proposed to estimate the parameters of the
systems. Unfortunately, most of the models fail to completely represent most
important characteristics of the signals of a three-phase power system. This
paper proposes a new state-space model that can well represent a real three-
phase power system by taking into account the unbalance conditions and
harmonic distortion of a three-phase power system. The model associated with
Extended Kalman Filter is then applied to estimate the positive and negative
sequences of the fundamental component. The simulation results show that the
proposed approach can accurately estimate the sequences of a three-phase
power system in real time.
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TOMTAT

Chét Ivong dién ndng la chd d& nghién ctu thu hit nhiéu sy quan tam gan
day. DE giam sat chat lwgng dién néng cla hé thdng dién, nhigu md hinh tin hiéu
dién (dién ap/dong dién) da dwroc dé xudt dé vdc Irong cac tham s6 cla hé thdng
dién. Vay nhung, hau hét nhiing md hinh nay khong thé mo ta day du céc dic
diém quan trong clia tin hiéu dién clia hé théng dién ba pha. Bai béo nay d& xuét
mot mo hinh méi biéu dién mot hé thdng dién ba pha thuc t€ trén khong gian
trang théi, trong d6 mo ta ca hién tuong mét can béng va hién tuong séng hai
clia hé thong dién ba pha. Md hinh trang thai nay duoc ap dung véi bd loc
Kalman md réng dé wéc lwong cac thanh phan thi ty thuan va th( ty nghich clia
thanh phan tan so co ban trong tin hiéu dién ba pha. Két qua md phdng chi ra
rang phurong phép diroc d& xust trong bai béo o thé udc lwong chinh xéc cac
thanh phan thi ty thuan va thi tw nghich nay.
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SYMBOL

Symbol Unit Meaning

T, s Sample time

VoV Ve V a phase voltage, b phase voltage,

¢ phase voltage

1. INTRODUCTION

In ideal three-phase power systems, the three-phase
currents/voltages should be constant-frequency sinusoids
with equal magnitudes and phases-shifted by 120° Such
three-phase power systems are balanced systems [1].
Unfortunately, in practice because of uneven distribution of
single-phase load, asymmetrical faults or other reasons, the
power systems become unbalanced, i.e., the three-phase
currents/voltages are often different in magnitudes and/or
their phases are not 120° apart. Additionally, due to load
and power supply variation, the fundamental frequency
and the voltages’ amplitudes of a three-phase power
system are not constant but changing in time [2, 3].
Because of the appearance of nonlinear loads, power
signals are also contaminated by high-order frequencies
sinusoids called harmonics. The frequency values of
harmonics are multiples of the fundamental frequency [4].
These power quality problems affect the reliability and
stability of power systems and must be identified as fast as
possible [5].

In order to effectively monitor three-phase power
systems’' operating conditions, various models of three-
phase power systems have been proposed to estimate
their parameters. [6] proposed a state-space model of
three-phase voltages. However, the model assumes the
systems to be balanced and ignores the unbalance
characteristics. Comparing to [6], the state-space model
presented in [7] can represent an unbalanced system by
introducing one more state variable. Nevertheless, it
ignored the existence of high-order frequency sinusoids in
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the three-phase voltages/currents. The state-space model
in [8] already considered the unbalance condition and
harmonic distortion of a three-phase power system,
nevertheless, it requires the fundamental frequency to be
provided. Similarly, Multi-output Adaline [9] also needs to
know the value of the fundamental frequency in advance.

Symmetrical theory provides an effective solution to
analyze an unbalanced power system by breaking down
the wunbalance voltage/current into three balanced
systems; the positive, the negative and the zero sequence
[10]. The negative sequence is useful indication of
unbalanced systems and used in fault detection, fault
location and overcurrent detection [11, 12]. On the other
hand, the positive-sequence quantity is needed in
evaluating voltage variation of power systems which is
significant to monitor and control the systems’ stability [8].

This research proposes a new state-space model that
can describe the unbalance, the harmonic contamination
and the unknown fundamental frequency of a three-phase
power system. Then Extended Kalman Filter is applied on
this model to estimate the positive and negative sequence
of the fundamental components including their amplitudes
and phases. The organization of this paper is as follows. In
Section 2, the state-space model in [7] are presented. This
model ignores the existence of harmonics in power signals.
Based on this model, in Section 3, a new state-space model
is introduced considering the appearance of harmonic
components. An identification scheme to estimate the
state variables of the new model is also proposed in this
section. Section 4 describes the application of the new
approach in estimating the positive and negative
sequences of the fundamental component. Section 5
presents simulation results of the performance of the
proposed model associated with Extended Kalman Filter.
Section 6 concludes the paper.

2. REVIEW OF THE STATE-SPACE MODEL OF THREE-
PHASE POWER SYSTEMS [7]

In this section, the state-space model of unbalanced
three-phase voltages and/or currents in [7] will be
presented. Consider unbalanced three phase voltages of
the following expression:

Vv, (K) =V, sin(wKT, +¢)
v, (K)=V, sin(wkT, +¢) (1)
v, (K) =V, sin(wkT, +¢,)

where Kk is the iteration number, T is the sampling period,

V, Vo, V. are the amplitudes, fzzﬂ is the fundamental
Y

frequency, ¢,,¢,,9. are the initial phase angles of the
three-phase voltages.

In [10], the set of three phase signals can be represented
as a sum of three sets according to the theory of
symmetrical components:

(GOl I VA (9N I A (O N R A (9]
vy (k) = Vb+ (k) +| Vy (k) + Vbo (k) (2)
VoK) V@) Ve 0] [V

In (2), the set:

v, (K)=V, sin(okT, +9¢,)

v, ()= V. sin(kT, +9, -=5) 3)

v, (K)=V, sin(ekT, +¢, +2—;)

is the positive sequence, that has clockwise rotation of
a-b-c. vV, and ¢, = okT, +¢, are respectively the amplitude

and phase angle of this positive sequence.
Additionally, the set:

v, (k)=V_sin(okT, +¢_)

v, (K)=V_sin(okT, +¢_+ 2?11) (4)

V. (K)=V_sin(okT, +¢_ —2—;)

is the negative sequence that has counter-clockwise
rotation of a-b-c. V.and ¢_ = kT, + ¢, are respectively the

amplitude and phase angle of this negative sequence.
Finally the set
v,°(K) =V, sin(oKT, + ¢;)
v,° (K) =V, sin(okT, +¢,) (5)
v’ (K) =V, sin(okT, + ¢,)
is the zero sequence of three phases with the same
magnitude and in phase.

Applying Clark’s transform [10] to transform the positive
sequence in three dimensional coordinate to  two
dimensional o coordinate;

Vv +(k) 1 \;)— Va+(k)
{Cﬁ } 2 2 ww (6)
v, (k) 3] 2 2 .
J3 |LVe (k)
L2 2]
results in;

{v;(k) = V. cos(okT, +¢,) -

v, (k) =V, sin(okT, +¢,)

The complex form of the positive sequence is
determined as:

Vi) =v, (K)+jv, (k) = A+ej‘“kT5 )

with A, =V e
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Similarly, the Clark’s transform of the negative
components is;

{va‘(k) =V_cos(okT, +¢_)
vy (k)=

V_sin(okT, +¢_) ©)
The complex form of the negative component is
calculated from (9) as:

v k) =v, (K)+jv, (k) =A e (10)
with A_ =V e

Through Clark’s transform, the zero sequence is
eliminated.

By applying Clark’s transform on the three phase signals
in (1), the resulting complex form of the three phase signals
is the sum of the complex currents corresponding to the
positive, negative and zero sequences that is:

v(k) =V, e"* 4V g ks (11)
(11) can be re-expressed as:

v(k) = A, ellelt It L A gt gl lE (12)
By defining:

q,(k)=A, e

{% (k)=A " )

and by assuming the fundamental frequency of system (1)
is constant in one sampling period, the following equations
can be deduced from (13):

{qz(kﬂ)} e, (k)

G k+D ] [ (") "a,k)
If frequency  in (1) is unknown, €™ is considered an

unknown parameter of model (14). Let g, (k) =¢€"", the

following model contains three state variables g ((k), g»(K),
Qla(k):

(14)

q,(k+1) q,(k)
d, (k+1) = ql(k)qz (k) (15)
a;(k+1) | [ 9,(k)a; (k)
with a scalar output:
yky=vi)=[0 1 1][q,k) g,k K] (16)

Model (15), (16) is a nonlinear state space model.
Although this model takes into account unbalance
conditions of power systems, it does not consider high-
frequency harmonics which are prevail in the signals of
power systems. Therefore, this model is insufficient to
represent a practical three-phase power system and if used
to estimate the fundamental frequency and the positive
and negative sequences of unbalanced three-phase
voltages under harmonic distortion, the estimation results
will be less accurate due to model error.
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3. PROPOSAL OF A NEW STATE-SPACE MODEL OF
THREE-PHASE SYSTEMS AND ITS ASSOCIATED
IDENTIFICATION SCHEME

3.1. A new state-space model of unbalanced three-
phase systems in harmonic distortion

According to [10], the three-phase voltages (or currents)
of an unbalanced three-phase power system under
harmonic distortion are described as:

ZV sin(NkT, +¢,,)

= Zvnb sin(nokT, +¢,,)

ZV sin(NkT, +¢,.)

(17)

where n is harmonic order; V., Vi, Vocand ¢.,,0,,,9,. are

correspondingly the amplitudes and initial phase angles of
the three-phase order-n harmonic.

In order to modelling the three-phase voltages v,, v, V.,
this proposal applies the modelling method in the previous
section to get the state-space model of each three-phase
harmonic (the fundamental term can be considered as
harmonic order 1).

V., sin(nokT, +¢,,)
V., sin(nokT, +¢,,)
V.. sin(nokT, +¢,.)

(18)

withn=1, 2, 3,... A combination of all the harmonic models
gives the complete state-space model of (17).

For simplicity, consider three-phase voltages with
harmonics order n =3 and n =5 as follows:

Vv, (K) =V, sin(okT, + ¢,,) + V,, SIN(3eKT, + ¢, )
+V;, Sin(50kT, + ¢, )

Vv, (K) =V, SiN(@KT, + ¢y ) + Vyp, SIN(BoKT, + dsy)
+ Vj, Sin(50kT, + by, )

Vv, (K) =V, sin(okT, + ¢,.) + V,, Sin(3ekT, + ¢, )
+ Vg, Sin(50kT; + ¢..)

As in Section 2, the fundamental components;
V,, sin(okT, + ¢,,)
Vy, sin(okT, + ¢,,)
V. sin(okT, + ¢, )

(20)

are represented by two state variables g,(k) and g,(k) with
the following equations:

{qz (k +1)} _[eFa,00
Gk+D ] ("), (k)
where e*" is an unknown parameter.

Similarly, the 3 order harmonics are represented by
two state variables g,(k) and gs(k) such that;

(21)
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{q4(k+l)} {(e“’s) a. k) } )

g5k +D | | (") a,(k)

And the 5™ order harmonics are described by two state
variables

Qs (k+7)] | (€")° g (k)
{q7 (k+ 7)} ) Lej“’“ )°a, (k)}
From (21) (22) (23), the model of the three phase

voltages (19) is:

g, (k+1) =e""q, (k)
ok +D) = (") g, (k)
A (k+1) = (€ )*q, (k)
gs(k+1) = (™) g5 (k)
Gk +1) = (€"")° s (k)
g, (k+1) =(€"")"q, (k)
where e/ is an unknown parameter. By introducing one
more state variable g,(k) = e’ , model (24) becomes:

o, (k+1) = q, (k)

d, (k+1) = q,(k)a, (k)
ds(k+1) =0, (k)a, (k)
d,(k+D) = q13 (k)a, (k)
gs(k+1) =g, (K)g (k)
Os(k+D = q15 (K)as (k)
d,(k+D) = ql_s (K)a, (k)

The model’'s output y(k) is set as the complex form of
the three phase voltages v,(k), v,(k), v.(k) in (19) which is
sum of the complex forms of all the harmonics of the three-
phase voltages as follows:

y(K) =[0111111[0, (k)0 (K 6 () 4, () (K G K) 6 ()]

Since v,(K), vy(Kk), v (k) are measured from the grid, y(k)
can be determined from the voltages at each iteration k.
Among the state variables of (25) and (26), q,(k) represents
the fundamental frequency and the others correspondingly
represent the positive and negative sequences of the
fundamental and the harmonics. If more other harmonic
orders appear in (19), more state variables can be added to
(25) and (26) to represent these harmonics.

Model (25 and (26) can be used with an identification
scheme to estimate the states of power systems.

3.2. Identification scheme:

Kalman Filter is an iterative identification method for
identifying the state variables of linear state-space models
[13]. Extended Kalman Filter is an extension of Kalman
Filter for nonlinear state-space models [13]. Since model
(25), (26) is a non-linear state-space model, in this paper,
Extended Kalman Filter [13] is chosen as the identification

(23)

(24)

(25)

(26)

scheme to associate with the proposed model to estimate
its state variables. However, the methods based on
Extended Kalman Filter have to deal with the difficulty of
choosing initial values of the state variables in order to
prevent the estimation from bias and divergence [13, 14].
Hereafter, we propose a solution to solve the initialization
problem of the proposed method.

The real frequency should deviate around its nominal
value (50+0,2Hz, for example) [12]. In addition, recalling that

q,(k) = e"" , a small sampling time T, makes the difference

of the nominal value and the real frequency negligible. If the
fundamental frequency is assigned to the nominal value, the
state variable g,(k) becomes a constant, and then model (25),
(26) becomes linear. By applying Kalman Filter to that model,
the two state variables g,(k) and g,(k) can be estimated to a
certain accuracy. Using the observations, an initialization
stage can be added. The method now includes two stages:
Initialization and tracking.

Initialization stage consists in:

—Fixing the fundamental frequency at its nominal value
and then applying Kalman Filter to estimate the state
variables g,(k) and gs(k) of model (25), (26) in a chosen
number of iterations with the variable g,(k) is a constant.

The tracking stage consists in:

—Assigning the estimated state variables in the
initialization stage as initial values for the state variables
d:(k), g,(k), gs(k) in this stage. Applying the EKF to the
nonlinear model (25), (26) to estimate the state variables.

—At each iteration k, calculating the mean square
relative error g(k) which is the average deviation of the
estimated output Y(k) and the output calculated from
measurement. If the error is over a predetermined
threshold, this means there is a big change in the signals,
for example a jump in the signals’ amplitudes, and the
estimation is out of track. The initialization stage needs to
be restarted.

4. APPLICATIONS OF THE NEW APPROACH IN
ESTIMATING THE POSITIVE AND NEGATIVE SEQUENCES
OF THE FUNDAMENTAL COMPONENT

The positive sequence of the fundamental component is

represented by g, (k), hence, its amplitude V,, and phase

angle ¢,, are deduced from §, (k) as the following formula:

24
00= 6]

oy, (k) = §+ £6,(K)

(27)

where

d,(k)| is amplitude of d,(k) and £g,(k)is its
phase angle.

The positive sequence of the fundamental components
can be reconstructed by applying inverse Clark’s transform
to g, (k) so that:
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e (9 l } Re(d, (k))
ol L B [Re@,
w OI=3172 Lm(%(k)J (28)
i (k) N
L2 2]

Similarly, the amplitude V,. and phase angle @,. of the
negative sequence of the fundamental component can be
estimated @, (k) from as follows:

2.
V, (k) = \g [CR(3!

o, (k)= g— 28,(k)

(29)

where |d,(k)| is amplitude of 6,(k) and £@,(k)is its
phase angle.

The reconstruction of the negative sequence of the
fundamental component is carried out as follows:

w0 1 } Re(@, (k)
a2 (2L N3 | Rely
» © _\fs 2 2 |:Im(q3(k))} (30)
Ilc_(k) 1 \/5
L2 2]

The positive and negative sequences of the harmonic
components can be estimated in the same way as the
estimation of the sequences of the fundamental component.

5. RESULTS AND DISCUSSION

A simulation test with Matlab is conducted to confirm
the performance of the proposed method in estimating the
fundamental frequency and the positive and negative
sequences of the fundamental component. In the test, the
testing three-phase voltages are of the form (17) that
contains of the fundamental component and the harmonic
orders 3" 5" and 7™ The amplitude of the positive
sequence is 1,0V and of the negative sequence is 0,4V. The
fundamental frequency of the signals is 50,2Hz. The
sampling time T is chosen as 0,0005s. The proposed model
is composed of nine state variables for modelling the
fundamental components and these harmonics and the
model of the method in [7] includes three state variables.
For the both models, the variable q,(k) is initialized at
0,9877 + 0,1564 which corresponds to the fundamental

frequency 50Hz and the initial values of the other state
variables are set to 0. The estimation results are then
compared to the estimation by the method in [7].

Figure 1 shows the estimated amplitudes of the positive
and negative sequences of the fundamental component by
the proposed method compared to the estimation of the
method in [6]. It can be seen that the estimation of the
proposed method quickly converges to the true value of
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these amplitudes. In details, the estimated amplitudes take
about one half of a cycle to reach an error less than 1%. On
the other hand, the estimation of the method in [7] is
oscillating around this value after a long convergence time.
The oscillation of the estimation of the method in [7] can be
explained by the model error which is resulted from
without taking into modelling the harmonic components
existing in the testing three-phase voltages.

The performance of the proposed method in estimating
the amplitudes of the positive and negative sequences is
presented in Table 1. According to this table, the estimation
converges to the true value of the amplitudes with a high
accuracy (the Mean Square Error (MSE) is about 10°). The
evolution of real the positive and negative sequences and
their reconstruction with the proposed method is
presented in Figure 2 and Figure 3. It can be seen from
these figures that after about quarter of a cycle, the
reconstructed signals converge to the real ones.

1.2
1.1 r

> 1 NN NNAPANLAPAPAPAPAPAPAPAPAPAPAPAPALAPALY
()){ i |

True value
Method in [7 _
Proposed method

0 0.1 a)

- U ) —True value
Method in [7]
NG Proposed method |
./V‘

AVAN
SN APAPAAANA NN NANA NN N NANANANNANAN

b) 0.2 0.3

time(s)

Figure 1. Amplitudes for the positive and negative sequences a) positive
sequence b) negative sequence

Table 1. Performance of the proposed method in estimating the amplitudes
of the positive and negative sequences

o0 0.1

Amplitude Meanatsteady | MSEatsteady | Errormaxat
state (V) state (V) | steadystate (V)

Positive sequence 1.0000 1.1708x10°° 5.2074x107*

Negative sequence 0.4000 4.8576x107%° | 3.9352x107*

1

v

0

v

0

1

AVaVaAYs

|Lr

0.05

AVAVAVA

— Real signal
I[![l gnal

7N Realsignal

Estimated signal

Figure 2. Reconstruction of the positive sequence compared to the real
positive sequence a) phase a, b) phase b, ¢) phase ¢
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6. CONCLUSIONS

)6 —Real signal
04 \ Estimated signal
/ \\ P N
0.2f i
of O\
> 02 \
04
06
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
a)
06 ——Real signal
04 Estimated signal
02K /
0 /‘
0.2 W
04
0.6
0 0.01 0.02 0.03 g 0.04 0.05 0.06 0.07
)
06 —Real signal
0.4 Estimated signal
02 /o N\
0 /
o, /
> /
02r >/
04
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

c)
time(s)

Figure 3. Reconstruction of the negative sequence compared to the real
negative sequence a) phase a, b) phase b, ¢) phase ¢

In this paper, a new state-space model is presented to
modelling the three-phase voltages/currents under
unbalance conditions, harmonic distortion with the
fundamental frequency unknown. This model is associated
with Extended Kalman Filter to estimate the positive and
negative sequences of the fundamental component. A
simulation is implemented to evaluate the performance of
the new proposed method. The simulation results prove
that under harmonic distortion and unbalance conditions,
the proposed method is efficient in tracking the positive
and negative sequence of the fundamental components as
well as estimating their amplitudes and phase angles. The
application of the proposed method can be extended to
fundamental frequency estimation and harmonic
estimation of three-phase voltages/currents.
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